skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramos, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Silicate weathering and organic carbon (OC) burial in soil regulate atmospheric CO2, but their influence on each other remains unclear. Generally, OC oxidation can generate acids that drive silicate weathering, yet clay minerals that form during weathering can protect OC and limit oxidation. This poses a conundrum where clay formation and OC preservation either compete or cooperate. Debate remains about their relative contributions because quantitative tools to simultaneously probe these processes are lacking while those that exist are often not measured in concert. Here we demonstrate that Li isotope ratios of sediment, commonly used to trace clay formation, can help constrain OC cycling. Measurements of river suspended sediment from two watersheds of varying physiography and analysis of published data from Hawaii soil profiles show negative correlations between solid-phase d7Li values and OC content, indicating the association of clay mineral formation with OC accumulation. Yet, the localities differ in their ranges of d7Li values and OC contents, which we interpret with a model of soil formation. We find that temporal trends of Li isotopes and OC are most sensitive to mineral dissolution/clay formation rates, where higher rates yield greater OC stocks and lower d7Li values. Whereas OC-enhanced dissolution primarily dictates turnover times of OC and silicate minerals, clay protection distinctly modifies soil formation pathways and is likely required to explain the range of observations. These findings underscore clay mineral formation, driven primarily by bedrock chemistry and secondarily by climate, as a principal modulator of weathering fluxes and OC accumulation in soil. 
    more » « less
  2. Spring waters from across the Costa Rica margin were analyzed for their Li and He isotope compositions to determine the utility of Li isotopes as a tracer of volatile sources in subduction zones. Li isotope ratios systematically decrease with increasing depth to the subducting slab: averaging +15.0‰ ± 9.2‰ in the outer forearc (<40 km to the slab), +9.3‰ ± 4.3‰ in the forearc (40–80 km to the slab), and +5.8‰ ± 2.8‰ in the arc (>80 km to the slab). In contrast, air-corrected 3He/4He values (reported relative to the ratio in air, RA) range from 0.4 to 7.5 RA and increase from predominantly crustal values near the trench to mantle values in the arc. Together, these data support progressive devolatilization of the subducting plate with slab-derived Li components sourced from shallowly expelled pore fluids in the outer forearc, sedimentary and/or altered oceanic crust contributing to the forearc, and limited slab input beneath the arc. 
    more » « less
  3. Asynchronous many-task runtimes look promising for the next generation of high performance computing systems. But these runtimes are usually based on new programming models, requiring extensive programmer effort to port existing applications to them. An alternative approach is to reimagine the execution model of widely used programming APIs, such as MPI, in order to execute them more asynchronously. Virtualization is a powerful technique that can be used to execute a bulk synchronous parallel program in an asynchronous manner. Moreover, if the virtualized entities can be migrated between address spaces, the runtime can optimize execution with dynamic load balancing, fault tolerance, and other adaptive techniques. Previous work on automating process virtualization has explored compiler approaches, source-to-source refactoring tools, and runtime methods. These approaches achieve virtualization with different tradeoffs in terms of portability (across different architectures, operating systems, compilers, and linkers), programmer effort required, and the ability to handle all different kinds of global state and programming languages. We implement support for three different related runtime methods, discuss shortcomings and their applicability to user-level virtualized process migration, and compare performance to existing approaches. Compared to existing approaches, one of our new methods achieves what we consider the best overall functionality in terms of portability, automation, support for migration, and runtime performance. 
    more » « less
  4. Metamorphic decarbonation in magmatic arcs remains a challenge to impose in models of the geologic carbon cycle. Crustal reservoirs and metamorphic fluxes of carbon vary with depth in the crust, rock types and their stratigraphic succession, and through geologic time. When byproducts of metamorphic decarbonation (e.g., skarns) are exposed at Earth’s surface, they reveal a record of reactive transport of carbon dioxide (CO2). In this paper, we discuss the different modes of metamorphic decarbonation at multiple spatial and temporal scales and exemplify them through roof pendants of the Sierra Nevada batholith. We emphasize the utility of analogue models for metamorphic decarbonation to generate a range of decarbonation fluxes throughout the Cretaceous. Our model predicts that metamorphic CO2 fluxes from continental arcs during the Cretaceous were at least 2 times greater than the present cumulative CO2 flux from volcanoes, agreeing with previous estimates and further suggesting that metamorphic decarbonation was a principal driver of the Cretaceous hothouse climate. We lastly argue that our modeling framework can be used to quantify decarbonation fluxes throughout the Phanerozoic and thereby refine Earth systems models for paleoclimate reconstruction. 
    more » « less